MATEMATICAS
 
MATEMATICAS
quimica
FISICA
sociales
CASTELLANO
InFoRmAcIoN PeRsoNaL

MiRcOlEs dE CeNiZa
INUNDACION TUMACO
semana santa
Dios en mi vida
MATEMATICAS
 
Imagen
 
MATEMATICA
La matemática es el estudio de las propiedades y las relaciones de entes abstractos (números, figuras geométricas) a partir de notaciones básicas exactas y a través del razonamiento lógico.

Mucha gente piensa en las matemáticas en términos de reglas que deben ser aprendidas para poder manipular símbolos o estudiar números o formas en abstracto por el mero hecho de aprenderlas.[cita requerida] La teoría matemática sí se desarrolla en abstracto: no depende de otra cosa fuera de sí misma. La verdad de la teoría se mide por la lógica y no por el experimento. Sin embargo, una de sus utilizaciones más valiosas es el describir o modelar los procesos en el mundo real, de manera que hay una interacción constante entre las matemáticas puras y las matemáticas aplicadas.

Las matemáticas pueden considerarse como el estudio general de las estructura de sistemas. Puesto que el estudio no está relacionado con el mundo físico, se buscan pruebas formales rigurosas, en lugar de verificaciones experimentales. La teoría se presenta en términos de un pequeño número de verdades dadas (conocidas como axiomas), desde las que puede inferir toda una teoría. Por lo tanto, los objetivos son la generalidad en el planteamiento y el rigor en la prueba, fines que pueden explicar la preocupación tradicional de los matemáticos por la unificación de ramas aparentemente distintas de las matemáticas.

Véase también: Filosofía de la matemática
No es infrecuente encontrar a quien describe la matemática como una simple extensión de los lenguajes naturales humanos,[cita requerida] que utiliza una gramática y un vocabulario definidos con extrema precisión, cuyo propósito es la descripción y exploración de relaciones conceptuales y físicas. Recientemente, sin embargo, los avances en el estudio del lenguaje humano apuntan en una dirección diferente: los lenguajes naturales (como el español y el francés) y los lenguajes formales (como la matemática y los lenguajes de programación) son estructuras de naturaleza básicamente diferente.
 
HISTORIA
Históricamente, la matemática surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos.[cita requerida] Estas tres necesidades pueden ser relacionadas en cierta forma con la subdivisión amplia de las matemáticas en el estudio de la cantidad, la estructura, el espacio y el cambio.

Los diferentes tipos de cantidades (números) han jugado un papel obvio e importante en todos los aspectos cuantitativos y cualitativos del desarrollo de la cultura, la ciencia y la tecnología.
El estudio de la estructura comienza al considerar las diferentes propiedades de los números, inicialmente los números naturales y los números enteros. Las reglas que dirigen las operaciones aritméticas se estudian en el álgebra elemental, y las propiedades más profundas de los números enteros se estudian en la teoría de números. Después, la organización de conocimientos elementales produjo los sistemas axiomáticos (teorías), permitiendo el descubrimiento de conceptos estructurales que en la actualidad dominan esta ciencia (e.g. estructuras categóricas). La investigación de métodos para resolver ecuaciones lleva al campo del álgebra abstracta. El importante concepto de vector, generalizado a espacio vectorial, es estudiado en el álgebra lineal y pertenece a las dos ramas de la estructura y el espacio.
El estudio del espacio origina la geometría, primero la geometría euclídea y luego la trigonometría. En su faceta avanzada el surgimiento de la topología da la necesaria y correcta manera de pensar acerca de las nociones de cercanía y continuidad de nuestras concepciones espaciales.
Escríbeme
Me interesa tu opinión